Jauch, W. (1983). Acta Cryst. A39, 756-761.
Luzzati, V. (1952). Acta Cryst. 5, 802-810.
Makowski, L. (1986). Acta Cryst. A42, 253-256.
Rango, C. de, Tsoucaris, G. \& Zelwer, Ch. (1974). Acta Cryst. A30, 342-353.
Roth, M. (1986). Acta Cryst. A42, 230-240.
Roth, M., Lewit-Bentley, A. \& Bentley, G. A. (1984). J. Appl. Cryst. 17, 77-84.

Sage, A. P. \& Melsa, J. L. (1971). System Identification, ch. 3. New York and London: Academic Press.
Sim, G. A. (1959). Acta Cryst. 12, 813-815.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318-321.
Worcester, D. L. \& Franks, N. P. (1976). J. Mol. Biol. 100, 359-378.
Zulauf, M., Timmins, P. A. \& Garavito, R. M. (1986). Biophys. J. 49, 96-98.

Acta Cryst. (1987). A43, 787-795

A New Description of Pentagonal Frank-Kasper Phases and a Possible Structure Model of the Icosahedral Quasicrystal

By Q. B. Yang and K. H. Kuo
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Academia Sinica, 110015 Shenyang, People's Republic of China

(Received 21 February 1986; accepted 5 June 1987)

Abstract

The structure of pentagonal Frank-Kasper phases can be recovered from the projection of a common MgCu_{2} cube described in a six-dimensional space. From the close structural relationship between the newly discovered icosahedral quasicrystal and the Frank-Kasper phases, a structure model has been proposed for the former.

1. Introduction

Penrose (1974) first pointed out that a twodimensional (2D) plane can be tiled by two rhombi, 72-108 and $36-144^{\circ}$ respectively, with a fivefold symmetry. Later, this was developed to the threedimensional (3D) case by Mackay (1982a, b), who used two rhombohedra, 63.43 and 116.57° respectively, displaying the icosahedral $2 / m \overline{3} \overline{5}$ symmetry. This has attracted much attention lately on account of the discovery of an icosahedral quasicrystal (Shechtman, Blech, Gratias \& Cahn, 1984).

An icosahedron has 12 vertices and six fivefold axes passing through its centre and vertices. The 3D Penrose lattice has been described by using a six-axes system and it was therefore called a quasilattice by Mackay ($1982 a, b$). Consequently, this can also be described in terms of the projection of a 6 D simple cubic lattice onto a 3D hyperplane [see, for example, Kramer \& Neri (1984) and Elser (1986)]. If the projection is carried out onto an incommensurate hyperplane, a 3D quasilattice is recovered.

The structure of pentagonal Frank-Kasper (FK) phases was known to consist mainly of icosahedra (Frank \& Kasper, 1958, 1959) and this close relation-
ship between FK phases and the icosahedral phase has guided some investigators to obtain new icosahedral phases in $\mathrm{Ti}_{2} \mathrm{Ni}$ (Zhang, Ye \& Kuo, 1985), $\mathrm{Mg}_{32}(\mathrm{Al}, \mathrm{Zn})_{49}$ (Ramachandrarao \& Sastry, 1985) and V-Ni-Si (Kuo, Zhou \& Li, 1987). Moreover, structure models of 2D and 3D quasicrystals have already been derived from their close relationship to the FK phases (Yang \& Kuo, 1986).

According to Anderson (1978), the structure of the pentagonal FK phases can be recovered by applying various symmetry operations, such as twinning, reflection, rotation, inversion etc., to the rhombohedral unit (60°) of the f.c.c. MgCu_{2} structure and the $\mathrm{Zr}_{4} \mathrm{Al}_{3}$ unit. Since this 60° rhombohedral unit is quite like the acute rhombohedron $\left(63.43^{\circ}\right)$ of the icosahedral phase, it is natural to inquire into the possibility, by projection of the $6 \mathrm{D} \mathrm{MgCu} \mathrm{H}_{2}$ onto a 3 D hyperplane, of obtaining the structure of both the pentagonal FK phases and the icosahedral phase. The present investigation is devoted mainly to a new description of the FK phases, and in the meantime a possible structure model for the quasicrystal is proposed. A preliminary report has already been published (Yang \& Kuo, 1986) and a similar study on the structure of the $\mathrm{Mg}_{32}(\mathrm{Al}, \mathrm{Zn})_{49}$ icosahedral phase has also appeared (Henley \& Elser, 1986).

2. Projection method

In the case of the projection of a 2D lattice onto a 1D space (Fig. 1), Elser (1986) pointed out that when $\tan \alpha$ is an irrational number an incommensurate structure will result. This applies only to the case where the direction of projection is normal to the
projection plane. As a matter of fact, both the projection direction and projection plane can vary independently. In such a case, whether the projected structure is commensurate or incommensurate depends on whether the subspace selected for projection is rational or irrational, irrespective of the projection direction. This point can be clearly seen in Fig. 1. When a straight line $A B$ passes only through a lattice point C but no other point, then $\tan \alpha$ is an irrational number. Draw a line $A^{\prime} B^{\prime}$ parallel to $A B$ and project all lattice points lying between these two lines perpendicularly onto $A B$ at $\ldots m_{1}, m_{2}, \ldots, m_{14}, \ldots$. Obviously, only two projected lengths, $r_{1}=m_{1} m_{2}=$ $a \cos \alpha$ and $r_{2}=m_{2} m_{3}=a \sin \alpha$, result and they form an aperiodic Fibonacci series. Now draw another pair of parallel lines $D F$ and $D^{\prime} F^{\prime}$ making an angle α^{\prime} with the X axis, where $\tan \alpha^{\prime}$ is a rational number, say $\frac{1}{2}$. When all lattice points between this pair of lines are projected also perpendicularly onto $A B$ at $\ldots n_{1}, n_{2}, \ldots, n_{12}, \ldots$, the projected lengths are still $r_{1}=n_{2} n_{3}$ and $r_{2}=n_{1} n_{2}$ with an irrational ratio r_{2} / r_{1}, but they now form $r_{2} r_{1} r_{1} r_{2} r_{1} r_{1} \ldots$, a periodic series which is determined by the periodic arrangement of lattice points on $D F$ and $D^{\prime} F^{\prime}$. By separating the projected plane (or hyperplane) from the projected direction and choosing either an irrational or a rational plane, it is possible to obtain either an incommensurate structure such as the icosahedral phase or a commensurate structure of a FK phase by a projection from 6D to 3D.

Let E^{6} be a 6 D vector space, Z and δ be the set of integers and real numbers respectively, \mathbf{b}_{1},

Fig. 1. Projection of a 2D lattice onto a 1D space illustrating the importance of the selection of projecting subspace ($A B, A^{\prime} B^{\prime}$ or $\left.D F, D^{\prime} F^{\prime}\right) . A B$ is an irrational line passing through only one lattice point C and the lattice points between $A B$ and $A^{\prime} B^{\prime}$, projected perpendicularly on $A B$, give an aperiodic incommensurate series of points ($m_{1}, m_{2}, m_{3}, \ldots$). $D F$ is a rational line lattice and the lattice points between $D F$ and $D^{\prime} F^{\prime}$, projected also perpendicularly on $A B$, form a periodic commensurate series of points ($n_{1}, n_{2}, n_{3}, \ldots$).
b_{2}, \ldots, b_{6} the set of basis vectors of a 6D lattice, $\mathbf{q}_{j}(j=1,2, \ldots, 6)$ the projection of \mathbf{b}_{j} in 3D space and $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{6}$ the set of vectors which span E^{6}.

Let L be the set of 6D lattice vectors f ; then

$$
L=\left\{\mathbf{f} \in E^{6} \mid \mathbf{f}=\sum_{i=1}^{6} u_{i} \mathbf{b}_{i}, u_{i} \in Z\right\} .
$$

We define a subspace G in E^{6} by

$$
\begin{gather*}
G=\left\{\mathbf{t} \in E^{6} \mid \mathbf{t}=\sum_{j=1}^{6} \alpha_{j} \mathbf{c}_{j}, \alpha_{1}, \alpha_{2}, \alpha_{3} \in[-\infty,+\infty]\right. \\
\left.\alpha_{i} \in\left[\beta_{i 1}, \beta_{i 2}\right](i=4,5,6), \quad \beta_{i j} \in \delta\right\} \tag{1}
\end{gather*}
$$

The value of $\left(\beta_{i 2}-\beta_{i 1}\right)(i=4,5,6)$ can be chosen for a known crystal. Generally $\left|\beta_{i 2}-\beta_{i 1}\right| \simeq 0 \rightarrow 1$.

Let L^{\prime} be a subset of L, and

$$
L^{\prime}=\left\{\mathbf{r} \in E^{6} \mid \mathbf{r}=\sum_{i=1}^{6} m_{i} \mathbf{b}_{i}, m_{i} \in Z, \mathbf{r} \in L \cap G\right\} .
$$

Let \mathbf{r}_{p} be the projection of r in 3D space; then

$$
\begin{equation*}
\mathbf{r}_{p}=\sum_{i=1}^{6} m_{i} \mathbf{q}_{i} \tag{2}
\end{equation*}
$$

3. Method of calculation

3.1. Projection matrix P and transformation matrix Ω

In order to calculate the projection vector \mathbf{r}_{p}, we have to use matrix algebra. In this paper, we use a capital English or Greek letter to denote a matrix and a corresponding small one with subscripts i, j, k etc. to denote an element of the matrix. For example, $c_{i j}$ is an element of the matrix C and \tilde{C} is the transpose of the matrix C.

With this matrix notation, (2) becomes

$$
\begin{equation*}
\mathbf{r}_{p}=\tilde{M} Q \tag{3}
\end{equation*}
$$

where

$$
\tilde{M}=\left[m_{1} m_{2} \ldots m_{6}\right], \quad \tilde{Q}=\left[\mathbf{q}_{1} \mathbf{q}_{2} \ldots \mathbf{q}_{6}\right] .
$$

For an icosahedral phase, $q_{i}(i=1,2, \ldots 6)$ are directed to six of the vertices of an icosahedron from its centre. As shown in Fig. 2, the centre of an icosahedron is positioned at the origin of the 3D Cartesian system with \mathbf{i}_{2} and \mathbf{i}_{3} parallel to one of the 2 and $\overline{5}$ axes of the icosahedron, respectively.

We impose the condition

$$
\begin{equation*}
Q=\Omega I^{(1)} \tag{4}
\end{equation*}
$$

where

$$
\tilde{I}^{(1)}=\left[\mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}\right] ;
$$

then

$$
\Omega=\left[\begin{array}{ccc}
\sin \theta & 0 & \cos \theta \tag{4a}\\
\sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \\
\sin \theta \cos 2 \varphi & \sin \theta \sin 2 \varphi & \cos \theta \\
\sin \theta \cos 3 \varphi & \sin \theta \sin 3 \varphi & \cos \theta \\
\sin \theta \cos 4 \varphi & \sin \theta \sin 4 \varphi & \cos \theta \\
0 & 0 & 1
\end{array}\right]
$$

For a 3D icosahedral quasicrystal, $\theta=\tan ^{-1} 2=$ 63.43° and $\varphi=72^{\circ}$; for a pentagonal FK phase, θ and φ can be slightly different from these values.

Substituting (4) into (3), we obtain

$$
\begin{equation*}
\mathbf{r}_{p}=\tilde{M} \Omega I^{(1)} \tag{5}
\end{equation*}
$$

If we set

$$
\begin{equation*}
Q=P B \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbf{r}_{p}=\tilde{M} P B \tag{7}
\end{equation*}
$$

where P is the projection matrix, with the property that

$$
P^{2}=P
$$

One can use both (5) and (7) to calculate quasilattice vectors \mathbf{r}_{p}, but (7) is much more complicated than (5). This is discussed in Appendix 1.

The problem is how to choose the $m_{i}(i=1$ to 6$)$ so that $\mathbf{r}=\sum_{i=1}^{6} m_{i} \mathbf{b}_{i}$ is located in L^{\prime}, the subset of L. This will be shown in the following section.
3.2. Formulae for calculating lattice constants and atomic coordinates

Let

$$
\begin{equation*}
C=S B \tag{8}
\end{equation*}
$$

where $\tilde{C}=\left[c_{1} \mathbf{c}_{2} \ldots \mathbf{c}_{6}\right]$ and S is the 6×6 transformation matrix.

Fig. 2. \mathbf{q}_{j} are vectors directed from the centre of an icosahedron towards its six vertices with \mathbf{q}_{6} parallel to i_{3} and \mathbf{q}_{1} on the plane defined by \mathbf{i}_{2} and $\mathbf{i}_{3} . \mathbf{i}_{j}$ are the basis vectors of a Cartesian system. The values in parentheses are polar coordinates.

From (8)

$$
B=S^{-1} C=U C
$$

then

$$
U=S^{-1}
$$

A lattice vector \mathbf{r} can be expressed as

$$
\begin{equation*}
\mathbf{r}=\tilde{M} B=\tilde{M} U C \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{r}=\sum \alpha_{i} \mathbf{c}_{i} \tag{10}
\end{equation*}
$$

From (9) and (10),

$$
\begin{equation*}
\alpha_{i}=\sum_{j=1}^{6} m_{j} u_{i j} \tag{11}
\end{equation*}
$$

We have to choose $m_{i}(i=1$ to 6$)$ such that the α_{i} ($i=4,5,6$) satisfy (1). If the elements of the first one, two or three rows in the matrix S are irrational numbers, i.e. one, two or three of the vectors c_{1}, c_{2} and c_{3} are irrational directions, the projected structure will be a $1 \mathrm{D}, 2 \mathrm{D}$ or 3 D quasicrystal.

Let $\mathbf{c}_{1}, \mathbf{c}_{2}$ and \mathbf{c}_{3} all be rational directions; $\mathbf{a}_{1}, \mathbf{a}_{2}$ and a_{3}, the projection of c_{1}, c_{2} and c_{3} respectively, will be the basis of a 3D crystalline phase, analogous to (2),

$$
\begin{equation*}
A=S^{(3)} Q=S^{(3)} \Omega I \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\left(S^{(3)} \Omega\right)^{-1} A \tag{12b}
\end{equation*}
$$

where $\tilde{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}\right] ; S^{(3)}$ denotes the first three rows of the matrix S. Formula (12a) gives the lattice constants of the primitive cell of the projected structure.

From (5) and (12b)

$$
\mathbf{r}_{p}=\tilde{M} \Omega\left(S^{(3)} \Omega\right)^{-1} A
$$

Sometimes the origin of the 3D unit cell is displaced from that of the 6 D one by $\mathrm{r}_{0}=\tilde{A} B$; then

$$
\begin{equation*}
\mathbf{r}_{p}=(\tilde{M}-\hat{\Lambda}) \Omega\left(S^{(3)} \Omega\right)^{-1} A=[x y z] A \tag{13}
\end{equation*}
$$

where $\Lambda=\left(\lambda_{1} \lambda_{2} \ldots \lambda_{6}\right), \lambda_{j} \in \delta$. Formula (13) gives the atomic coordinates $[x y z]$ in the projected structure.

4. Frank-Kasper phases

First, the basic structure of MgCu_{2} will be analysed; this will form the basis for further discussion. This structure has a f.c.c. lattice with 24 atoms, its primitive cell being a 60° rhombohedron with an edge length equal to $a / \sqrt{ } 2$. Each rhombohedron has six atoms at $000, \frac{1}{2} 00 \bigcirc, \frac{x}{8} \frac{x}{8}(x=3$ and 5$)$. In the 6D space, the corresponding MgCu_{2} rhombohedron will have 27 atoms (see Appendix 2) located at: 000000 (one),

[^0]$\frac{1}{2} 000000$ (six), $\pm\left(\frac{3}{8} \frac{3}{8} 000 \frac{3}{8}\right), \pm\left(0 \frac{3}{8} \frac{3}{8} 00_{\frac{3}{8}}^{8}\right), \pm\left(00 \frac{3}{8} \frac{3}{8} 0 \frac{3}{8}\right)$, $\pm\left(000_{8}^{\frac{3}{8} \frac{3}{8}}\right), \quad \pm\left(\frac{3}{8} 000_{8}^{\frac{3}{8}}\right), \quad \pm\left(\frac{3}{8} \frac{3}{8} 0_{8}^{\frac{3}{8}} 00\right), \quad \pm\left(0_{8}^{\frac{3}{8}} 0_{8}^{\frac{3}{3}} 0\right)$, $\pm\left(\frac{3}{8} 0_{8}^{3} \frac{3}{8} 00\right), \pm\left(00_{8}^{3} 0_{8}^{0} \frac{3}{8} 0\right), \pm\left(\frac{3}{8} 0 \frac{3}{8} 00_{8}^{3} 0\right)$.
Once θ and φ are selected, the matrix Ω is known from (4a). The important step in obtaining a projected crystal structure is to define the S matrix or the six vectors \mathbf{c}_{j}. In the following the complex structure of the monoclinic $\mathrm{Mg}_{4} \mathrm{Zn}_{7}(Z=110$ atoms, $a=2 \cdot 596$, $b=1.428, \quad c=0.524 \mathrm{~nm}, \quad \gamma=102.5^{\circ}$) (Yarmolyuk, Kripyakevich \& Mel'nik, 1975) will be used as an illustrative example. Along the unique axis, namely the [001] direction, $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ has a layer structure (Fig. $3 a$) consisting of four layers: the primary layers have pentagon-triangle networks at $z=0$ and $\frac{1}{2}$, the latter being rotated 36° from the former, forming pentagonal antiprisms; the secondary layers are at $z= \pm \frac{1}{4}$

Fig. 3. (a) $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ structure projected on (001) (Yarmolyuk et al., 1975). (b) The secondary layer of $\mathrm{Mg}_{4} \mathrm{Zn}_{7}, Z=\frac{1}{4}$, $\frac{3}{4}$ (letters with a prime) and $\frac{5}{4}$ (letters with a double prime) illustrating its unit cell $A B C D A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$, vectors \mathbf{q}_{j} representing an icosahedron and the projected vectors $J K^{\prime}, J I, J J^{\prime \prime}, J M^{\prime \prime}, J L^{\prime \prime}$ of the selected 6D subspace.
with nodes located at the centres of these pentagonal antiprisms forming interlocked icosahedra. Therefore, the layer structure of $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ can be represented by the secondary layer as shown in Fig. 3(b), in which filled circles and letters without a prime represent the nodes at $z=\frac{1}{4}$, open circles and letters with a prime those at $z=\frac{3}{4}$ and letters with a double prime those at $z=\frac{5}{4} . A B C D A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ represents a unit cell in $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ with $\mathbf{a}_{1}=A D, \mathbf{a}_{2}=A B, a_{3}=A A^{\prime \prime}$. Let $O E^{\prime}$, $O F^{\prime}, O G^{\prime}, O H^{\prime}$ and $O O^{\prime \prime}$ denote the projected vectors $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \mathbf{q}_{4}$ and \mathbf{q}_{6}, respectively, in the 3D hyperplane projected from the vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}$, and \mathbf{b}_{6}, respectively, of a 6 D cubic crystal. Then $J K^{\prime}=$ $2 \mathbf{q}_{3}-\mathbf{q}_{1}, J I=-2 \mathbf{q}_{2}-\mathbf{q}_{3}+\mathbf{q}_{4}+\mathbf{q}_{6}, J J^{\prime \prime}=\mathbf{q}_{6}, J M^{\prime \prime}=2 \mathbf{q}_{3}$ and $J L^{\prime \prime}=-2 \mathbf{q}_{2}$ are the projected vectors onto the 3D hyperplane of vectors $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathbf{c}_{3}, \mathrm{c}_{4}$ and c_{5} in the 6 D space. If \mathbf{q}_{5} is the projection of \mathbf{c}_{6}, then

$$
S=\left[\begin{array}{cccccc}
\overline{1} & 0 & \frac{2}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & \overline{1} & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & \frac{2}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

with the limiting conditions:

$$
\begin{array}{r}
0<\alpha_{4}<1 \\
-1<\alpha_{5}<0 \\
\alpha_{6}=0 .
\end{array}
$$

Then all the lattice points in the secondary layer and therefore the lattice parameter of the primitive cell of $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ can be calculated. If one converts these lattice parameters to those of the Bravais monoclinic cell, the calculated lattice parameters become $b / a=$ $0 \cdot 5470, c / a=0 \cdot 2012, \alpha=90, \beta=90$ and $\gamma=102 \cdot 8^{\circ}$, and they are in good agreement with the experimental data (see Table 1): $b / a=0 \cdot 5501, c / a=0 \cdot 2019, \alpha=$ $90, \beta=90, \gamma=102 \cdot 5^{\circ}$. The S, θ and $\varphi, \beta_{i j}$, and the calculated and experimental data of lattice parameters for the other nine FK phases are also given in Table 1. Obviously, most of the deviations of b / a and c / a are below 1% (maximum deviation $2 \cdot 6 \%$) and the deviations of α, β and γ are within 0.56°.

If the limiting conditions are relaxed to

$$
\begin{aligned}
0 & <\alpha_{4}<1 \cdot 2 \\
-1 \cdot 2 & <\alpha_{5}<0
\end{aligned}
$$

and one uses the atom positions in the $6 \mathrm{D} \mathrm{MgCu}{ }_{2}$ rhombohedron, the atom positions in the $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ structure can be calculated as shown in Table 2. For the atom positions of the 110 atoms in $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$, the average deviation compared with the shortest atom distances is $3 \cdot 69 \%$. A similar calculation was carried out for another FK phase with a rather complex structure, X phase $\left(\mathrm{Mn}_{45} \mathrm{Co}_{40} \mathrm{Si}_{45}\right)$, and the results are shown in Table 3. The average deviation of 74

Table 1. Calculated lattice parameters of $F K$ phases by cut and projection method from a $6 D \mathrm{MgCu}_{2}$ cube compared with experimental data

atom positions is $3 \cdot 85 \%$. Such good agreement may serve to show the possibility of using this projection method to obtain crystal structures of a number of pentagonal FK phases from a common 6D MgCu_{2} cube.

5. A possible structure model of the icosahedral phase

As mentioned above, the 3D Penrose lattice consists of acute and obtuse rhombohedra; a 2D projection of it is shown in Fig. 4. Its resemblance to a FK phase is quite obvious, in such respects as the different orientations (U and U^{\prime}) and twining (U) of the acute rhombohedra; the rectangular unit Z and the compound unit R in the second layer of $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ as shown in Fig. 3(a) can all be found in Fig. 4. This has led the present authors to propose a structure model for the 2D quasicrystals (Yang \& Kuo, 1986).

In the 3D quasicrystal the acute rhombohedra, by adopting different orientations and twinning, form
the main skeleton and the obtuse rhombohedra fill the empty space left by the former. Since the acute rhombohedra can be considered as slightly distorted MgCu_{2} rhombohedral units, now 63.43° instead of 60°, the structure model of the icosahedral quasicrystals can therefore be derived from the MgCu_{2} structures as shown in Fig. 5. The atom positions in the acute rhombohedron shown in Fig. 5(b) and those in the obtuse rhombohedron can easily be fixed as shown in Fig. 5(a), if the fact that the obtuse and actue rhombohedra have a face in common is taken into consideration. However, this obtuse rhombohedron is too thin to allow any atom to be located inside it.

Since the MgCu_{2}-type structure is known to consist of the $Z 16$ Kasper polyhedron, also known as the Friauf-Laves polyhedron, there must be a somewhat distorted one in this structure model. If one assumes the rhombohedral cell edge to be 0.476 nm , the distances from the central atom of this polyhedron to

Table 2. Calculated coordinates of $\mathrm{Mg}_{4} \mathrm{Zn}_{7}$ by cut and projection from a $6 \mathrm{D} \mathrm{MgCu}_{2}$ cube compared with experimental ones: space group $B 2 / m, a=25.96, b=14 \cdot 28, c=5 \cdot 24 \AA$

		Experimental coordinates			Calculated coordinates			Atomic deviation $\Delta d(\AA)$	Coordinates in 6D crystal	α_{4}	α_{5}
Atom	Position	x	y	z	x	y	z				
$4 \mathrm{Mg}(1)$	4(i)	$0 \cdot 307$	0.351	0	0.303	0.353	0	$0 \cdot 11$	$(0 \overline{1} 010 \overline{1})+\left(0_{8}^{3} \frac{3}{3} 00 \frac{3}{3}\right)$	0.6875	-0.6875
$4 \mathrm{Mg}(2)$	$4(i)$	0.177	0.321	0	$0 \cdot 176$	0.322	0	$0 \cdot 03$	$(0 \overline{1} 110 \overline{1})+\left(00_{8}^{3} \frac{3}{3} 00 \frac{5}{8}\right)$	0.3125	-0.8125
$4 \mathrm{Mg}(3)$	4(i)	$0 \cdot 166$	0.747	0	0.161	0.745	0	$0 \cdot 13$	$(0 \overline{2} \overline{1} 100)+\left(0{ }^{3} \frac{3}{3} 00 \frac{3}{3}\right)$	$0 \cdot 1875$	-0.1875
$4 \mathrm{Mg}(4)$	4(i)	0.361	0.570	0	$0 \cdot 359$	0.580	0	$0 \cdot 16$		$0 \cdot 8125$	-0.3125
$4 \mathrm{Mg}(5)$	4(i)	0.129	0.108	0	$0 \cdot 120$	0.095	0	0.27	$(001110 \overline{1})+\left(00^{2} \frac{3}{8} 00_{8}^{3}\right)$	$0 \cdot 1875$	-1.1875
$4 \mathrm{Mg}(6)$	4(i)	0.213	0.977	0	0.215	0.973	0	0.09	$(02 \overline{1} 1100)+\left(003^{3} \frac{3}{8} 0_{8}^{3}\right)$	0.3750	-0.3750
$4 \mathrm{Mg}(7)$	4(i)	0.033	0.726	0	0.035	0.720	0	0.11	$(02 \overline{1} 100)+\left({ }_{8}^{3} 3000{ }_{8}^{3}\right)$	0.3750	-0.1875
$4 \mathrm{Mg}(8)$	$4(i)$	0.479	0.602	0	0.486	0.605	0	$0 \cdot 18$	$(\overline{1} 2110 \overline{1})+\left(\frac{3}{8} \frac{3}{8} 000 \frac{3}{8}\right)$	$0 \cdot 6250$	-0.3125
$4 \mathrm{Mg}(9)$	4(i)	0.445	0.957	0	0.448	0.960	0	0.08	$\left(0 \overline{2 d}^{2} 101\right)+\left(00{ }_{8}^{5} 5_{8}^{5} 0_{8}^{5}\right)$	1-1250	-0.6250
$4 \mathrm{Mg}(10)$	4(i)	0.008	0.903	0	0.010	0.912	0	$0 \cdot 13$	$\frac{1}{2}\left[\left(\overline{1} 0 \frac{3}{2} 000\right)+\left(002{ }_{2}^{1} 0 \overline{1}\right)\right]$	$0 \cdot 5000$	-0.2500
$8 \mathrm{Zn}(1)$	8(j)	0.070	0.248	0.25	0.067	0.242	0.25	$0 \cdot 10$	(001̄100)	$0 \cdot 0000$	-1.0000
$8 \mathrm{Zn}(2)$	$8(j)$	0.232	0.173	0.25	$0 \cdot 229$	0.175	0.25	$0 \cdot 09$	$(00010 \overline{1})+\left(00000 \frac{1}{2}\right)$	$0 \cdot 5000$	-1.0000
$8 \mathrm{Zn}(3)$	8(j)	0.108	0.898	0.25	0.108	0.892	0.25	0.09	(02̄1101)	$0 \cdot 0000$	$0 \cdot 0000$
$8 \mathrm{Zn}(4)$	$8(j)$	0.086	0.569	$0 \cdot 25$	0.088	0.567	0.25	0.06	$(0 \overline{1} 1100)+\left(00000 \frac{1}{2}\right)$	$0 \cdot 0000$	-0.5000
$4 \mathrm{Zn}(5)$	4(i)	0.079	0.409	0	0.077	0.405	0	0.07	$(011100)+\left(0 \frac{1}{2} 0000\right)$	$0 \cdot 0000$	-0.7500
$4 \mathrm{Zn}(6)$	4(i)	0.168	0.533	0	0.169	0.533	0	0.03	$(0 \overline{1} 1100)+\left(00 \frac{1}{2} 000\right)$	$0 \cdot 2500$	-1.0000
4 Zn (7)	4(i)	0.256	0.657	0	$0 \cdot 260$	0.662	0	$0 \cdot 11$	$(02 \overline{2} 100)+\left(0 \frac{1}{2} 0000\right)$	$0 \cdot 5000$	-0.2500
$4 \mathrm{Zn}(8)$	4(i)	0.313	0.138	0	0.311	0.142	0	0.09	$(000101 \overline{1})+\left(00 \frac{1}{2} 000\right)$	0.7500	-1.0000
4 Zn (9)	4(i)	0.402	0.266	0	0.402	0.271	0	0.07	$(0 \overline{1} 110 \overline{1})+\left(0 \frac{1}{2} 0000\right)$	1.0000	-0.7500
$4 \mathrm{Zn}(10)$	4(i)	0.346	0.787	0	0.352	0.791	0	$0 \cdot 15$	$(02 \overline{2} 0100)+\left(00_{2}^{1} 000\right)$	0.7500	0.0000
$4 \mathrm{Zn}(11)$	4(i)	0.330	0.966	0	0.331	0.967	0	0.03	$(0 \overline{2} 0100)+\left(000{ }_{2}^{1} 00\right)$	0.7500	-0.5000
4 Zn (12)	4(i)	0.479	$0 \cdot 178$	0	0.479	0.175	0	0.04	$(\overline{1} 0110 \overline{1})+\left(\frac{1}{2} 00000\right)$	$0 \cdot 5000$	-1.0000
4 Zn (13)	4(f)	0.25	0.5	0.25	0.25	0.5	0.25	0.00	$(0 \overline{1} 010 \overline{1})+\left(00000 \frac{1}{2}\right)$	0.5000	-0.5000
2 Zn (14)	2(c)	0	0.5	0	0	0.5	0	$0 \cdot 00$	$(0 \overline{1} \overline{1} 100)+\left(\frac{1}{2} 00000\right)$	$0 \cdot 5000$	-0.5000

The average of $\Delta d / d$ is 3.69%. The origin is at ($10 \overline{1} 10 \overline{1}$).

Table 3. Calculated coordinates of X phase $\left(\mathrm{Mn}_{45} \mathrm{Co}_{40} \mathrm{Si}_{15}\right)$ by cut and projection method from a $6 \mathrm{D} \mathrm{MgCu}{ }_{2}$ cube compared with experimental ones: space group Pnnm, $a=15.43, b=12.39, c=4.74 \AA$

			Experimental coordinates			Calculated coordinates			Atomic deviation	Coordinates in 6D crystal	α_{4}	
No.	Atom	Position	x	y	z	x	y	z	$\Delta d(\AA)$			α_{5}
1	CoMn	$8(h)$	$0 \cdot 1106$	0.0858	0.2428	$0 \cdot 1050$	0.0955	0.2500	$0 \cdot 15$	$(0 \overline{1} 0000)+\left(00000 \frac{1}{2}\right)$	0.0000	$0 \cdot 5000$
2	CoMn	8(h)	0.1759	0.3980	0.2354	$0 \cdot 1851$	0.4045	$0 \cdot 2500$	$0 \cdot 18$	$(1 \overline{1} 0000)+\left(00000 \frac{1}{2}\right)$	0.7500	0.2500
3	CoMnSi	8(h)	0.3981	$0 \cdot 2104$	0.2536	0.3950	0.2135	$0 \cdot 2500$	0.06	$(12 \overline{2} 0000)+\left(00000 \frac{1}{2}\right)$	0.7500	0.7500
4	Si	$4(\mathrm{~g})$	0.2156	0.9917	0	0.2099	0.1000	0	0.14	$(111101)+\left(0 \frac{1}{2} 0000\right)$	0.7500	0.7500
5	CoMn	4(g)	0.3607	0.0573	0	0.3550	0.0590	0	0.09	$(0 \overline{2} 0001)+\left(\frac{1}{2} 00000\right)$	0.3750	0.7500
6	CoMn	4(g)	0.4986	0.3107	0	0.5000	0.3090	0	0.03	$(12 \overline{1} 001)+\left(00 \frac{1}{2} 000\right)$	$0 \cdot 5000$	0.7500
7	Si	2(b)	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	$0 \cdot 00$	$(1 \overline{2} 1001)+\left(0 \frac{1}{2} 0000\right)$	$0 \cdot 2500$	0.5000
8	Si	4(g)	0.3546	0.7424	0	0.3550	0.7500	0	0.09	$(1 \overline{1} 101)+\left(000 \frac{1}{2} 00\right)$	$0 \cdot 1250$	0.6250
9	CoMn	4(g)	$0 \cdot 2092$	0.8023	0	0.2099	0.8090	0	$0 \cdot 08$	$(1 \overline{1} 1101)+\left(00 \frac{1}{2} 000\right)$	$0 \cdot 2500$	1.0000
10	Mn	4(g)	0.0701	0.5292	0	0.0725	0.5295	0	0.04	${ }_{2}^{1}\left[\left(\frac{1}{2} 1 \overline{1} 0101\right)+\left(1 \frac{1}{2} 0000\right)\right]$	0.6875	0.4375
11	Mn	4(g)	0.4728	0.8993	0	0.4761	0.9080	0	$0 \cdot 12$	$(1 \overline{1} \overline{1} 101)+\left(00_{8}^{3} \frac{3}{8} 0 \frac{3}{8}\right)$	-0.2188	0.7187
12	Mn	$4(\mathrm{~g})$	0.0551	0.2779	0	0.0563	0.2830	0	0.07	$(0 \overline{1} 0000)+\left({ }^{3} \frac{3}{8} 0000_{8}^{3}\right)$	0.2813	0.2188
13	Mn	4(g)	0.2360	$0 \cdot 2130$	0	0.2338	0.2170	0	0.06	$(0 \overline{2} 0000)+\left({ }_{8} \frac{3}{8} 000 \frac{5}{8}\right)$	0.4688	0.5313
14	Mn	4(g)	0.3394	0.3990	0	0.3426	0.4045	0	0.08	$(1 \overline{2} 1000)+\left(0 \frac{5}{5} 500 \frac{3}{8}\right)$	0.5563	0.4375
15	Mn	4(g)	0.2351	0.5865	0	0.2338	0.5920	0	0.07	$(111100)+\left(00{ }_{5}^{3} \frac{5}{8} 0 \frac{3}{8}\right)$	0.4688	0.5313
16	Mn	4(g)	0.0506	0.9026	0	0.0525	0.9045	0	$0 \cdot 04$	$(1 \overline{1} 1 \overline{1} 00)+\left(0 \frac{5}{8} 00_{8}^{3}\right)$	0.3125	0.6875

The average of $\Delta d / d$ is 3.85%. The origin is at $(0 \overline{2} 1000)$.
its 12 closest atoms at 1 to 12 (Fig. 5b) are 0.277 (1 to 3), 0.288 (4 to 6) and 0.293 nm (7 to 12), respectively. These are comparable to the interatomic distances of 0.291 and 0.279 nm , respectively, for $\mathrm{Ta}-\mathrm{Ta}$ and $\mathrm{Ta}-\mathrm{Co}$ pairs in the equilibrium TaCo_{2} phase ($a=0.673 \mathrm{~nm}$). Moreover, the atomic volumes of the acute and obtuse rhombohedra are 0.0136 and $0.0126 \mathrm{~nm}^{3}$ respectively, while the average atomic volume in TaCo_{2} is $0.0127 \mathrm{~nm}^{3}$. It is of interest to note that the edge length of the rhombohedron is $a / \sqrt{ } 2=0.476 \mathrm{~nm}$, in good agreement with the 0.46 nm obtained by Elser (1986).

Fig. 4. 2D fivefold quasicrystal structure.

Fig. 5. Structure model of the icosahedral quasicrystal consisting of obtuse (a) and acute (b) rhombohedra having a common interface. The acute rhombohedron ($\alpha=63.43^{\circ}$) is a slightly distorted rhombohedral unit cell of the f.c.c. MgCu_{2} structure ($\alpha=60^{\circ}$).

6. Concluding remarks

In the past Frank \& Kasper $(1958,1959)$ have discussed the fundamentals of the geometrical nature of the FK phases. Andersson (1978) applied symmetry operations to the $\mathrm{MgCu} u_{2}$ rhombohedral and $\mathrm{Zr}_{4} \mathrm{Al}_{3}$ rectangular units to recover a large number of the pentagonal FK phases. Recently in this laboratory we have used the juxtaposition of pentagonal antiprisms to explain the domain structures of FK phases (Ye, Li \& Kuo 1985; Ye, Wang \& Kuo 1985a, b; Li \& Kuo, 1985) as well as the structure of new FK phases (Wang, Ye \& Kuo, 1985). In this paper a new description of the structure of FK phases has been described which has the following merits: (1) the structures of FK phases are described analytically by well defined mathematical equations; (2) all known structures of pentagonal FK phases can be recovered from a common $6 \mathrm{D} \mathrm{MgCu}_{2}$ cube by a projection method; (3) the structure relationship between the icosahedral phase and the pentagonal FK phases is made more clear; and (4) the transition structure between the icosahedral phase and the equilibrium FK phase can be speculated upon.

The present research is part of a programme of study of alloy structures supported by the Science Fund of the Academia Sinica.

APPENDIX 1

Projection matrix P
From (5) and (7) we have

$$
\Omega I^{(1)}=P B
$$

Assuming

$$
I=\left[\begin{array}{l}
I^{(1)} \\
I^{(2)}
\end{array}\right]
$$

and

$$
I^{(2)}=\left[\begin{array}{l}
\mathbf{i}_{4} \\
\mathbf{i}_{5} \\
\mathbf{i}_{6}
\end{array}\right]
$$

in which $\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{6}$ are the basis vectors in the 6 D Cartesian system, let

$$
B=R I
$$

then

$$
\Omega I=P R I
$$

or

$$
P=\Omega R^{-1} .
$$

For P to be a projection matrix, it is necessary that

$$
\begin{equation*}
P P=\Omega R^{-1} \Omega R^{-1}=\Omega\left(R^{-1} \Omega\right) R^{-1}=\Omega R^{-1}=P \tag{A1}
\end{equation*}
$$

or

$$
R^{-1} \Omega=E,
$$

where E is the unit matrix.
If R can be decomposed into two 6×3 matrices Ω and Γ,

$$
R=[\Omega \Gamma],
$$

and R^{-1} to two 3×6 matrices Ω^{\prime} and Γ^{\prime}

$$
R^{-1}=\left[\begin{array}{l}
\Omega^{\prime} \\
\Gamma^{\prime}
\end{array}\right]
$$

then

$$
\Omega R^{-1}=\Omega \Omega^{\prime}+\Omega \Gamma^{\prime}
$$

and

$$
B=R R^{-1} B=[\Omega \Gamma]\left[\begin{array}{l}
\Omega^{\prime} \\
\Gamma^{\prime}
\end{array}\right] B=\left(\Omega \Omega^{\prime}+\Gamma \Gamma^{\prime}\right) B .
$$

Let

$$
\begin{align*}
& \Omega \Omega^{\prime}=P, \tag{A2}\\
& \Gamma \Gamma^{\prime}=P^{\prime} ; \tag{A3}
\end{align*}
$$

then

$$
B=\left(P+P^{\prime}\right) B
$$

where P and P^{\prime} are projection matrices along the parallel and perpendicular directions respectively. Since

$$
R^{-1} R=E
$$

then

$$
\left[\begin{array}{l}
\Omega^{\prime} \\
\Gamma^{\prime}
\end{array}\right][\Omega \Gamma]=\left[\begin{array}{cc}
\Omega^{\prime} \Omega & \Omega^{\prime} \Gamma \\
\Gamma^{\prime} \Omega & \Gamma^{\prime} \Gamma
\end{array}\right]=\left[\begin{array}{cc}
E^{(3)} & 0 \\
0 & E^{(3)}
\end{array}\right]
$$

where $E^{(3)}$ is the unit matrix of order 3. Then

$$
\begin{align*}
\Omega^{\prime} \Omega & =\Gamma^{\prime} \Gamma=E^{(3)} \tag{A4}\\
\Omega^{\prime} \Gamma & =\Gamma^{\prime} \Omega=0 . \tag{A5}
\end{align*}
$$

Then

$$
R^{-1} \Omega=\left[\begin{array}{c}
\Omega^{\prime} \\
\Gamma^{\prime}
\end{array}\right] \Omega=\left[\begin{array}{l}
\Omega^{\prime} \Omega \\
\Gamma^{\prime} \Omega
\end{array}\right]=\left[\begin{array}{c}
E^{(3)} \\
0
\end{array}\right]=E^{(3)} ;
$$

thus $\left(A 1^{\prime}\right)$ and ($A 1$) are proved.
Similarly, it can be proved that

$$
P^{\prime} P^{\prime}=P^{\prime} .
$$

Once the 6×3 matrix of order 3 is arbitrarily given, then R^{-1}, Ω^{\prime} and P can be obtained. It is most convenient to choose Γ so that the number of basis vectors of a unit cell that are perpendicular and of equal modulus is a maximum. This is especially so when

$$
\tilde{\Omega} \Gamma=0 .
$$

Let

$$
\Omega^{\prime}=X \tilde{\Omega} ;
$$

then

$$
\Omega^{\prime} \Gamma=X \tilde{\Omega} \Gamma=0,
$$

where X is a 3×3 matrix. From (A4),

$$
\Omega^{\prime} \Omega=X \tilde{\Omega} \Omega=E^{(3)}
$$

one obtains

$$
X=(\tilde{\Omega} \Omega)^{-1}
$$

and

$$
\Omega^{\prime}=(\tilde{\Omega} \Omega)^{-1} \tilde{\Omega}
$$

From (A2)

$$
\begin{equation*}
P=\Omega(\tilde{\Omega} \Omega)^{-1} \tilde{\Omega} . \tag{A6}
\end{equation*}
$$

From the Ω given in ($4 a$),

$$
\begin{aligned}
& p_{i j}= \alpha \cos [(i-1) \varphi] \cos [(j-1) \varphi] \\
&+\beta \sin [(i-1) \varphi] \sin [(j-1) \varphi]+\gamma \cos ^{2} \theta \\
& \quad i=1,2, \ldots, 5, \quad j=1,2, \ldots, 5 ; \\
& p_{6 j}= p_{j 6}=\gamma \cos ^{2} \theta \quad j=1,2, \ldots, 6 ;
\end{aligned}
$$

$$
p_{66}=\gamma ;
$$

where

$$
\begin{aligned}
\alpha & =\left[\sum_{j=0}^{4} \cos ^{2}(j \varphi)\right]^{-1} \\
\beta & =\left[\sum_{j=0}^{4} \sin ^{2}(j \varphi)\right]^{-1} \\
\gamma & =\left(5 \cos ^{2} \theta+1\right)^{-1} .
\end{aligned}
$$

For $\theta=\tan ^{-1} 2=63.43^{\circ}, \quad \varphi=72^{\circ}$,

$$
P=\frac{\sqrt{5}}{10}\left[\begin{array}{cccccc}
\sqrt{5} & 1 & \overline{1} & \overline{1} & \frac{1}{1} & 1 \\
\frac{1}{1} & \sqrt{5} & 1 & \overline{1} & \overline{1} & 1 \\
\overline{1} & \frac{1}{1} & \sqrt{5} & 1 & \overline{1} & 1 \\
1 & \overline{1} & \frac{1}{1} & \sqrt{5} & 1 & 1 \\
1 & 1 & 1 & 1 & \sqrt{5} & 1 \\
1 & 1 & \sqrt{5}
\end{array}\right] .
$$

For $\theta=60^{\circ}, \varphi=72^{\circ}$,

$$
P=\frac{5}{10}\left[\begin{array}{cccccc}
\sqrt{5} & 1 & \overline{1} & \overline{1} & 1 & 2 / \sqrt{5} \\
\frac{1}{1} & \sqrt{5} & 1 & \overline{1} & \frac{1}{1} & 2 / \sqrt{5} \\
\frac{1}{1} & \frac{1}{1} & \sqrt{5} & 1 & \frac{1}{1} & 2 / \sqrt{5} \\
1 & \overline{1} & \frac{1}{1} & \sqrt{5} & 1 & 2 / \sqrt{5} \\
2 / \sqrt{5} & 2 / \sqrt{5} \\
\hline 5
\end{array}\right] .
$$

For $\theta=60^{\circ}, \psi=\cos ^{-1 \frac{1}{3}}=70.53^{\circ}$,

$$
\alpha=2.4857, \quad \beta=2.5142, \quad \gamma=2.25
$$

From the three different P matrices, it is clear that it is easier to use (5) than (7) to obtain \mathbf{r}_{p}.

APPENDIX 2

Atoms in the $\mathbf{6 D} \cdot \mathbf{M g C u}_{\mathbf{2}}$ rhombohedron

Let us assume that the acute rhombohedron ($\alpha=$ $63 \cdot 43^{\circ}$) of the 3D Penrose tiling has a similar structure to the 3D MgCu_{2} rhombohedron ($\alpha=60^{\circ}$) which has two atoms at $\pm\left(\frac{3}{8} \frac{3}{8} \frac{3}{8}\right)$ in addition to those at the vertices and the centres of edges. This acute rhombohedron can have 20 different orientations. But one half of them are in the opposite direction to the other half, so that only ten independent orientations exist. Let the basis vectors be $\mathbf{q}_{i}, \mathbf{q}_{j}$ and \mathbf{q}_{k}, where the set i, j, k may have the values

$$
\begin{array}{lllll}
(126), & (236), & (346), & (456), & (156), \\
(12 \overline{4}), & (23 \overline{4}), & (\overline{1} 34), & (\overline{2} 54), & (1 \overline{3} 5)
\end{array}
$$

The coordinates of these 20 atoms inside the rhombohedron are

$$
\begin{array}{lll}
\pm\left(\frac{3}{8} \frac{3}{8} 000 \frac{3}{8}\right), & \pm\left(0 \frac{3}{8} 00_{8}^{3}\right), & \pm\left(00_{8}^{3} \frac{3}{8} 0 \frac{3}{8}\right), \\
\pm\left(0000_{8}^{\frac{3}{8}} \frac{3}{8}\right), & \pm\left(\frac{3}{8} 000 \frac{3}{8} \frac{3}{8}\right), & \pm\left(\frac{3}{8} \frac{3}{3} 0 \frac{3}{8} 00\right), \\
\pm\left(00_{8}^{3} \frac{3}{8} 0 \frac{3}{8} 0\right), & \pm\left(\frac{\overline{3}}{8} 0 \frac{3}{8} 00\right), & \pm\left(0 \frac{\overline{3}}{8} 0 \frac{3}{8} \frac{3}{8} 0\right), \\
& \pm\left(\frac{3}{8} 0 \frac{3}{8} 0 \frac{3}{8} 0\right), &
\end{array}
$$

Together with the atom at the origin and six more atoms on the centres of the edges with coordinates $\left(\frac{1}{2} 00000\right) \bigcirc$, there are altogether 27 atoms. Since the \mathbf{q}_{i} are the projection of \mathbf{b}_{i}, these 27 atoms can be considered as projected from a 6D unit cell. By projecting such a 6D unit cell onto a 3D hyperplane, the atomic positions in the icosahedral quasicrystal can be obtained.

References

Andersson, S. (1978). J. Solid State Chem. 23, 191-204.
ElSER, V. (1986). Acta Cryst. A42, 36-43.
Frank, F. C. \& Kasper, J. S. (1958). Acta Cryst. 11, 184-190.
Frank, F. C. \& Kasper, J. S. (1959). Acta Cryst. 12, 483-499.
Friauf, T. B. (1927). J. Am. Chem. Soc. 49, 3107-3114.
Henley, C. L. \& Elser, V. (1986). Philos. Mag. B, 53, L59-L66.
Kramer, P. \& Neri, R. (1984). Acta Cryst. A40, 580-587.
Kripyakevich, P. I. \& Yarmolyuk, Ya. O. (1970). Dopov. Akad. Nauk Ukr. RSR Ser. A, 32, 984-951.
Kripyakevich, P. I. \& Yarmolyuk, Ya. O. (1974). Dopov. Akad. Nauk Ukr. RSR Ser. A, 36, 460-463.
Kuo, K. H., Zhou, D. S. \& LI, D. X. (1987). Philos. Mag. Lett. 55, 33-39.
Laves, F. \& Witte, H. (1935). Metallwirtsch. Metallwiss. Metalltech. 14, 645.
Li, D. X. \& Kuo, K. H. (1985). Philos. Mag. A51, 849-856.
MACKAY, A. L. (1982a). Sov. Phys. Crystallogr. 26, 517-522.
MACKAY, A. L. (1982b). Physica, 114A, 609-613.
MANOR, P. C., Shoemaker, C. B. \& Shoemaker, D. P. (1972). Acta Cryst. B28, 1211-1218.
Penrose, R. (1974). Bull. Inst. Math. Appl. 10, 266-271.
Ramachandrarao, P. \& Sastry, G. V. S. (1985). Pramana-J. Phys. 25, L225-L230.
Shechtman, D., Blech, I., Gratias, D. \& Cahn, J. W. (1984). Phys. Rev. Lett. 53, 1951-1953.
Shoemaker, C. B. \& Shoemaker, D. P. (1967). Acta Cryst. 23, 231-238.
Wang, D. N., Ye, H. Q. \& Kuo, K. H. (1985). Acta Cryst. B42, 21-25.
Westgren, A. (1936). Sci. Rep. Tohoku Imp. Univ. Honda Mem. p. 852.

Wilson, C. G., Thomas, D. K. \& Spooner, F. J. (1960). Acta Cryst. 13, 56-57.
Yang, Q. B. \& Kuo, K. H. (1986). Philos. Mag. B53, L115-L121.
Yarmolyuk, Ya. P., Kripyakevich, P. I. \& Mel'nik, E. V. (1975). Kristallografiya, 20, 538-542.

Ye, H. Q., Li, D. X. \& Kuo, K. H. (1985). Philos. Mag. A51, 829-837.
Ye, H. Q., Wang, D. N. \& Kuo, K. H. (1985a). Philos. Mag. A51, 839-848.
YE, H. Q., WANG, D. N. \& Kuo, K. H. (1985b). Ultramicroscopy, 16, 273-278.
Zhang, Z., Ye, H. Q. \& Kuo, K. H. (1985). Philos. Mag. A52, L49-L52.

Acta Cryst. (1987). A43, 795-797

Debye-Waller Coefficient of Nb by the Elastic Neutron Diffraction Method

By J. Bashir, Q. H. Khan and N. M. Butt
Pakistan Institute of Nuclear Science and Technology, PO Nilore, Islamabad, Pakistan

(Received 28 April 1987; accepted 18 June 1987)

Abstract

The Debye-Waller exponent B and the Debye temperature Θ for niobium have been determined at room temperature by the elastic neutron diffraction method using a triple-axis neutron spectrometer. The contribution of TDS to the diffraction peaks was found to be negligible. The value of B thus found was $0.55(5) \AA^{2}$. The Debye temperature Θ was

0108-7673/87/060795-03\$01.50

262 (12) K. The results are compared with values obtained by other techniques.

Introduction

From a diffraction experiment one could, in principle, obtain information about lattice-dynamical properties such as the mean square displacement of an atom and the Debye temperature of the material.
(c) 1987 International Union of Crystallography

[^0]: * Ω has no inverse matrix but $\left(S^{(3)} \Omega\right)$ is a 3×3 matrix and of course has an inverse matrix.

