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Abstract 

The structure of pentagonal Frank-Kasper phases 
can be recovered from the projection of a common 
MgCu2 cube described in a six-dimensional space. 
From the close structural relationship between the 
newly discovered icosahedral quasicrystal and the 
Frank-Kasper phases, a structure model has been 
proposed for the former. 

1. Introduction 

Penrose (1974) first pointed out that a two- 
dimensional (2D) plane can be tiled by two rhombi, 
72-108 and 36-144 ° respectively, with a fivefold sym- 
metry. Later, this was developed to the three- 
dimensional (3D) case by Mackay (1982a, b), who 
used two rhombohedra, 63.43 and 116.57 ° respec- 
tively, displaying the icosahedral 2/m35 symmetry. 
This has attracted much attention lately on account 
of the discovery of an icosahedral quasicrystal 
(Shechtman, Blech, Gratias & Cahn, 1984). 

An icosahedron has 12 vertices and six fivefold 
axes passing through its centre and vertices. The 3D 
Penrose lattice has been described by using a six-axes 
system and it was therefore called a quasilattice by 
Mackay (1982a, b). Consequently, this can also be 
described in terms of the projection of a 6D simple 
cubic lattice onto a 3D hyperplane [see, for example, 
Kramer & Neri (1984) and Elser (1986)]. If the projec- 
tion is carried out onto an incommensurate hyper- 
plane, a 3D quasilattice is recovered. 

The structure of pentagonal Frank-Kasper (FK) 
phases was known to consist mainly of icosahedra 
(Frank & Kasper, 1958, 1959) and this close relation- 
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ship between FK phases and the icosahedral phase 
has guided some investigators to obtain new icosahe- 
dral phases in Ti2Ni (Zhang, Ye & Kuo, 1985), 
Mg32(ml, Zn)49 (Ramachandrarao & Sastry, 1985) and 
V-Ni-Si (Kuo, Zhou & Li, 1987). Moreover, structure 
models of 2D and 3D quasicrystals have already been 
derived from their close relationship to the FK phases 
(Yang & Kuo, 1986). 

According to Anderson (1978), the structure of the 
pentagonal FK phases can be recovered by applying 
various symmetry operations, such as twinning, 
reflection, rotation, inversion etc., to the rhombohe- 
dral unit (60 °) of the f.c.c. MgCu2 structure and the 
ZraA13 unit. Since this 60 ° rhombohedral unit is quite 
like the acute rhombohedron (63.43 °) of the icosahe- 
dral phase, it is natural to inquire into the possibility, 
by projection of the 6D MgCu2 onto a 3D hyperplane, 
of obtaining the structure of both the pentagonal FK 
phases and the icosahedral phase. The present investi- 
gation is devoted mainly to a new description of the 
FK phases, and in the meantime a possible structure 
model for the quasicrystal is proposed. A preliminary 
report has already been published (Yang & Kuo, 
1986) and a similar study on the structure of the 
Mg32 (A1, Zn)49 icosahedral phase has also appeared 
(Henley & Elser, 1986). 

2. Projection method 

In the case of the projection of a 2D lattice onto a 
1D space (Fig. 1), Elser (1986) pointed out that when 
tan a is an irrational number an incommensurate 
structure will result. This applies only to the case 
where the direction of projection is normal to the 
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projection plane. As a matter of fact, both the projec- 
tion direction and projection plane can vary indepen- 
dently. In such a case, whether the projected structure 
is commensurate or incommensurate depends on 
whether the subspace selected for projection is 
rational or irrational, irrespective of the projection 
direction. This point can be clearly seen in Fig. 1. 
When a straight line A B  passes only through a lattice 
point C but no other point, then tan a is an irrational 
number. Draw a line A ' B '  parallel to A B  and project 
all lattice points lying between these two lines perpen- 
dicularly onto A B  at . . . m l , m 2 , . . . , m l 4 , . . . .  
Obviously, only two projected lengths, r~ = m~m2= 
a cos a and rE = m2m3 = a sin a, result and they form 
an aperiodic Fibonacci series. Now draw another pair 
of parallel lines D F  and D ' F '  making an angle a '  
with the X axis, where tan a '  is a rational number, 
say ½. When all lattice points between this pair of 
lines are projected also perpendicularly onto A B  at 
. . .n~,  n 2 , . . . ,  n~2 , . . . ,  the projected lengths are still 
rl = n2n3 and r2 = n~n2 with an irrational ratio r2/rl ,  
but they now form r2rlr lr2r~rl . . . ,  a periodic series 
which is determined by the periodic arrangement of 
lattice points on D F  and D'F ' .  By separating the 
projected plane (or hyperplane) from the projected 
direction and choosing either an irrational or a 
rational plane, it is possible to obtain either an incom- 
mensurate structure such as the icosahedral phase or 
a commensurate structure of a FK phase by a projec- 
tion from 6D to 3D. 

Let E 6 be a 6D vector space, Z and 8 be the set 
of integers and real numbers respectively, b~, 

. . . .  

• ~,~,_g~'." ',, . ",, • / ~  
NO, ', ",, 

.... : ..... - .... :__ 

b, 4 ,• 

~,.' o7~ G", ' 

. . . . 

o o ~  

Fig. 1. Projection of a 2D lattice onto a 1D space illustrating the 
importance of the selection of projecting subspace (AB, A'B' or 
DF, D'F'). AB is an irrational line passing through only one 
lattice point C and the lattice points between AB and A'B', 
projected perpendicularly on AB, give an aperiodic incom- 
mensurate series of points (mr, m2, m3,...). DF is a rational 
line lattice and the lattice points between DF and D'F', projected 
also perpendicularly on AB, form a periodic commensurate 
series of points (nt, n2, n3,...). 

b 2 , . . .  , b 6 the set of basis vectors of a 6D lattice, 
qj ( j =  1 , 2 , . . . ,  6) the projection of bj in 3D space 
and c~, c 2 , . . . ,  c6 the set of vectors which span E 6. 

Let L be the set of 6D lattice vectors f; then 

We define a subspace G in E 6 by 

6 
G = t ~ E6[t = ~ otjcj, 0~1, a2, a 3 E [-00, +00], 

j = l  

a,e[f l , l , /3 ,2]  ( i = 4 , 5 , 6 ) ,  fl~je3}. (1) 

The value of (fl~2-/3il) ( i = 4 ,  5,6) can be chosen 
for a known crystal. Generally Ifli2-flill  =0--> 1. 

Let L' be a subset of L, and 

Let rp be the projection of r in 3D space; then 

6 

rp = ~ miqi. 
i=l 

(2) 

3 .  M e t h o d  o f  c a l c u l a t i o n  

3.1. Projection matrix  P and  transformation matrix  f2 

In order to calculate the projection vector rp, we 
have to use matrix algebra. In this paper, we use a 
capital English or Greek letter to denote a matrix and 
a corresponding small one with subscripts i, j, k etc. 
to denote an element of the matrix. For example, cij 
is an element of the matrix C and t~ is the transpose 
of the matrix C. 

With this matrix notation, (2) becomes 

rp= lVIQ (3) 

where 

i Y ' l = [ m l m 2 . . . m 6 ] ,  (~ = [qlq2. • • qr]. 

For an icosahedral phase, q, (i = 1, 2 , . . .  6) are direc- 
ted to six of the vertices of an icosahedron from its 
centre. As shown in Fig. 2, the centre of an icosahe- 
dron is positioned at the origin of the 3D Cartesian 
system with i2 and i3 parallel to one of the 2 and 3 
axes of the icosahedron, respectively. 

We impose the condition 

Q = O I  ~1) (4) 

where 

~cl)= [ili2i3]; 
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then 

sin 0 0 cos 0 
sin 0 cos ¢ sin 0 sin ¢ cos 0 

/ 2 =  s i n 0 c o s 2 ¢  s i n 0 s i n 2 ¢  cos0  
sin 0 cos 3¢ sin 0 sin 3¢ cos 0 
sin 0 cos 4¢ sin 0 sin 4¢ cos 0 

0 0 1 

(4a) 

For a 3D icosahedral quasicrystal, 0 = t a n  -~ 2 =  
63.43 ° and ¢ = 72°; for a pentagonal FK phase, 0 and 

(5) 

¢ can be slightly different from these values. 
Substituting (4) into (3), we obtain 

rp = lVlOI (1). 

If  we set 

Q = P B ,  (6) 

rp = IVIPB, 

then 

(7) 

where P is the projection matrix, with the property 
that 

p 2 =  p. 

One can use both (5) and (7) to calculate quasilattice 
vectors rp, but (7) is much more complicated than 
(5). This is discussed in Appendix 1. 

The problem is how to choose the mi (i = 1 to 6) 6 
so that r = Y,j__x m~b~ is located in L', the subset of L. 
This will be shown in the following section. 

3.2. Formulae for  calculating lattice constants and 
atomic coordinates 

Let 
C=SB, (8) 

where t~ = [ C L C 2 . . .  c6]  and S is the 6 x 6 transforma- 
tion matrix. 

~ 000 

i! 

Fig. 2. qj are vectors directed from the centre of an icosahedron 
towards its six vertices with q6 parallel to i 3 and ql on the plane 
defined by i2 and i 3 . i I are the basis vectors of a Cartesian system. 
The values in parentheses are polar coordinates. 

From (8) 

then 

B = S - ~ C  = UC; 

U = S  1. 

A lattice vector r can be expressed as 

r -  1VIB-- 1VIUC 

or 

From (9) and (10), 

(9) 

r =  ~ OliCi. (10) 

6 

a,= E mjuu. (11) 
j----1 

We have to choose mi (i = 1 to 6) such that the ai 
(i = 4, 5, 6) satisfy (1). If  the elements of the first one, 
two or three rows in the matrix S are irrational num- 
bers, i.e. one, two or three of  the vectors el, e2 and 
e3 are irrational directions, the projected structure 
will be a 1D, 2D or 3D quasicrystal. 

Let el, e2 and e3 all be rational directions; a~, a2 
and a3, the projection of  e~, e2 and e3 respectively, 
will be the basis of a 3D crystalline phase, analogous 
to (2), 

A = S(3)Q = S(3)j'2I (12a) 

and 

I = ( S(3) f2 )-~A (12b)* 

where ,4 = [ a l a 2 a 3 ] ;  S (3) denotes the first three rows 
of the matrix S. Formula (12a) gives the lattice con- 
stants of the primitive cell of the projected structure. 

From (5) and (12b) 

rp = / ~ ' 2  ( S ( 3 ) ~ - 2 ) - I A .  

Sometimes the origin of the 3D unit cell is displaced 
from that of  the 6D one by r0 = AB; then 

r p = ( 1 V 1 - A ) O ( S ° ) J ' 2 ) - I A = [ x y z ] A  (13) 

where A = (A1A2... X6), Aj ~ 8. Formula (13) gives the 
atomic coordinates [xyz] in the projected structure. 

4. Frank-Kasper phases 

First, the basic structure of MgCu2 will be analysed; 
this will form the basis for further discussion. This 
structure has a f.c.c, lattice with 24 atoms, its primitive 
cell being a 60 ° rhombohedron with an edge length 
equal to a/~/2. Each rhombohedron has six atoms at 
000, ½00~, gg~ (x = 3 and 5). In the 6D space, the 
corresponding MgCu2 rhombohedron will have 27 
atoms (see Appendix 2) located at: 000000 (one), 

* £2 has no inverse matrix but (S(3)12) is a 3 x 3 matrix and of 
course has an inverse matrix. 
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½000000 (six), 33 3 33 +(~00 ~ ) ,  ± ( ~ 0 ~ ) ,  ±(0~00,33 3 
±(oo~), ±(~oo~), ±(~oo), ± ( ~ o ) ,  

33 3 33 ± 3 ~ 3 ±(~00), ( ~ 0 ) .  ±(%~0), 
Once 0 and q, are selected, the matrix 12 is known 

from (4a). The important step in obtaining a projected 
crystal structure is to define the S matrix or the six 
vectors cj. In the following the complex structure of 
the monoclinic Mg4Zn7 ( Z =  110 atoms, a =2.596, 
b=1.428, c=0 .524nm,  3'=102.5 ° ) (Yarmolyuk, 
Kripyakevich & Mel'nik, 1975) will be used as an 
illustrative example. Along the unique axis, namely 
the [001] direction, MgaZn7 has a layer structure (Fig. 
3a) consisting of four layers: the primary layers have 
pentagon-triangle networks at z = 0 and ½, the latter 
being rotated 36 ° from the former, forming pen- 
tagonal antiprisms; the secondary layers are at z = ±J 

..•'-z: I/2 

. . ~ z  = 3//, & I/4 

(a) 

I 

(b) 

/ 0 
x ®'" ~ ," ', , 

R 'i ~ 

Z 

Fig. 3. (a) Mg4Zn7 structure projected on (001) (Yarmolyuk et 
al., 1975). (b) The secondary layer of Mg4ZnT, Z =¼, ] (letters 
with a prime) and ~ (letters with a double prime) illustrating its 
unit cell ABCDA" B" C" D", vectors qj representing an icosahe- 
dron and the projected vectors JK', Jl, JJ", JM", JL" of the 
selected 6D subspace. 

with nodes located at the centres of these pentagonal 
antiprisms forming interlocked icosahedra. There- 
fore, the layer structure of MgnZn7 can be represented 
by the secondary layer as shown in Fig. 3(b), in which 
filled circles and letters without a prime represent the 

! 
nodes at z = z, open circles and letters with a prime 
those at z = 3 and letters with a double prime those 
at z =I. ABCDA"B"C"D" represents a unit cell in 
Mg4Zn7 with a~ = AD, a2 = AB, a3 = AA". Let OE', 
OF', OG', OH' and OO" denote the projected vectors 
ql, q2, q3, q4 and q6, respectively, in the 3D hyperplane 
projected from the vectors b~, b2, b3, ha ,  and b6, 
respectively, of a 6D cubic crystal. Then JK'= 
2q3-ql, JI=-2q2-q3+q4+q6, JJ"=q6, JM"=2q3 
and JL"= -2q2 are the projected vectors onto the 3D 
hyperplane of vectors el, e2, c3, c4 and c5 in the 6D 
space. If q5 is the projection of c6, then 

] 0 2 0 0 0 

, o  1 
S =  0 0 0 0 !o oo! 

o o o 
0 0 0 1 

with the limiting conditions: 

O< ce4< 1 

- l < a s < O  

~ 6 = 0 .  

Then all the lattice points in the secondary layer and 
therefore the lattice parameter of the primitive cell 
of MglZn7 can be calculated. If one converts these 
lattice parameters to those of the Bravais monoclinic 
cell, the calculated lattice parameters become b/a = 
0.5470, c/a = 0-2012, a = 90,/3 = 90 and 3, = 102.8 °, 
and they are in good agreement with the experimental 
data (see Table 1): b/a =0.5501, c/a =0.2019, a = 
90, /3 =90, 3' = 102"5 °. The $, 0 and ~p, /3ij, and the 
calculated and experimental data of lattice param- 
eters for the other nine FK phases are also given in 
Table 1. Obviously, most of the deviations of b/a 
and c/a are below 1% (maximum deviation 2.6%) 
and the deviations of a, fl and 3' are within 0.56 °. 

If the limiting conditions are relaxed to 

0<C~a<l '2  

- 1 " 2 < a 5 < 0  

and one uses the atom positions in the 6D MgCu2 
rhombohedron, the atom positions in the Mg4Zn7 
structure can be calculated as shown in Table 2. For 
the atom positions of the 110 atoms in Mg4ZnT, the 
average deviation compared with the shortest atom 
distances is 3.69%. A similar calculation was carried 
out for another FK phase with a rather complex 
structure, X phase (MnnsCo4oSi45), and the results 
are shown in Table 3. The average deviation of 74 
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Table 1. Calculated lattice parameters of FK phases by cut and projection method from a 6D MgCu2 cube 
compared with experimental data 

F K  M a t r i x  fli~ 

phases  S Bill fl12 fl21 J[~22 

MgCu 2 S 0) 0 0 0 0 0 0 

MgZn 2 8 (2) 0 1 0 0 0 0 

MgNi 2 S (3) 0 1 0 0 0 0 

Zr4AI3 S ~4) 0 0 0 0 0 0 

Fe7W 6 S (5) 0 1 0 0 0 0 

W2FeSi S (6) 0 1 0 1 0 0 

M S (7) 0 1 0 1 0 0 

(C0o.57- S (s) 0 1 0 1 0 0 
8io.43)3V2 
X phase S C9) -0 .25  1 -0 .25  0.75 0 0 

Mg4Zn7 S (t°) 0 1.20 -1 .20  0 0 0 

[li°°°° °i] [°i °°° o,ooo   ,ooo 
S( t )=  0 1 0 0 S(2)= 0 1 0 0 

0 0 1 0 0 0 0 0 
0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 1 

I i°°°°ot [i 1 . o o o o   o,oo 
S(5)= 1 1 i" 0 S(6) 0 0 0 0 0 

1 0 0 0 = i" 0 0 0 0 
0 0 0 1 0 0 0 1 
0 0 1 0 1 0 0 0 

S(9)= 0 0 0 0 0 sOO)= 0 0 0 0 
0 0 0 2 0 0 0 

0 2 0 0 0 [ 0 0 
0 0 0 1 0 0 0 1 

Project ion Calculated  1 
angles  Exper imenta lJ  lattice constants  

~31 ~32 0(°) ~0(°) b/a c/a a(o) fl(o) 7(0) 

60 70"53 1 1 
1 1 

60 70-53 1 1-633 
1 1"647 

60 70"53 1 3"266 
1 3"282 

60 72 1 1"108 
1 0"992 

60 72 1 5"526 
1 5-432 

60 72 0-8506 0"5164 
0"8421 0"5122 

60 72 0"5878 0"3036 
0"5721 0"3033 

References  

90 90 90 Fr iauf  (1927) 
90 90 90 

90 90 120 Friauf  (1927) 
90 90 120 

90 90 120 Laves & Witte (1935) 
90 90 120 

90 90 120 Wilsot b Thomas & 
90 90 120 Spooner (1960) 

89.43 89-43 120 Westgren (1936) 
90 90 120 

90 90 90 Kripyakevich & 
90 90 90 Yarmolyuk (1974) 

90 90 90 Shoemaker & Shoemaker 
90 90 90 (1967) 

60 72 0.4425 
0.4397 

60 72 0.7987 
0.8032 

60 72 0.5470 
0.5501 0] [o 0 

. 0 1 0 
. S(3)= 2 0 

2 0 0 
0 .  0 0 
0 0 0 

i ° 
S(7) = 0 0 

0 0 
0 i 
0 0 

0"2688 
0.2714 

0.2996 
0-3074 

0.2012 
0.2019 

0 0 0 
o o i 
0 0 0 
o o i 
1 0 0 
0 1 0 

o o 
i o o 
0 0 1 
o o i 
1 0 0 
0 1 0 

90 
90 

90 
90 

90 
90 

90 98.40 Kripyakevich & Yamolyuk 
90 99-2 (1970) 

90 90 Manor, Shoemaker & 
90 90 Shoemaker (1972) 

90 102.8 Yarmolyuk, Kripyakevich 
90 102.5 & Mel 'nik (1975) [0000 ] 

 oooo  
S(4)= 0 1 i 0 

1 0 0 0 
0 0 1 0 
0 0 0 1 

0 i 1 0 02 

S(s)= 0 0 0 0 
i 0 0 0 
0 0o 
0 0 0 1 

atom positions is 3.85%. Such good agreement may 
serve to show the possibility of using this projection 
method to obtain crystal structures of a number of 
pentagonal FK phases from a common 6D MgCu2 
cube. 

5. A possible structure model of the icosahedral phase 

As mentioned above, the 3D Penrose lattice consists 
of acute and obtuse rhombohedra; a 2D projection 
of it is shown in Fig. 4. Its resemblance to a FK phase 
is quite obvious, in such respects as the different 
orientations ( U and U') and twining ( U )  of the acute 
rhombohedra; the rectangular unit Z and the com- 
pound unit R in the second layer of Mg4Zn7 as shown 
in Fig. 3(a) can all be found in Fig. 4. This has led 
the present authors to propose a structure model for 
the 2D quasicrystals (Yang & Kuo, 1986). 

In the 3D quasicrystal the acute rhombohedra, by 
adopting different orientations and twinning, form 

the main skeleton and the obtuse rhombohedra fill 
the empty space left by the former. Since the acute 
rhombohedra can be considered as slightly distorted 
MgCu2 rhombohedral units, now 63.43 ° instead of  
60 °, the structure model of the icosahedral quasicrys- 
tab can therefore be derived from the MgCu2 struc- 
tures as shown in Fig. 5. The atom positions in the 
acute rhombohedron shown in Fig. 5(b) and those 
in the obtuse rhombohedron can easily be fixed as 
shown in Fig. 5(a),  if the fact that the obtuse and 
actue rhombohedra have a face in common is taken 
into consideration. However, this obtuse rhombo- 
hedron is too thin to allow any atom to be located 
inside it. 

Since the MgCu2-type structure is known to consist 
of the Z16 Kasper polyhedron, also known as the 
Friauf-Laves polyhedron, there must be a somewhat 
distorted one in this structure model. If one assumes 
the rhombohedral cell edge to be 0.476 nm, the dis- 
tances from the central atom of this polyhedron to 



792 P E N T A G O N A L  F R A N K - K A S P E R  P H A S E S  

Table  2. Calculated coordinates of Mg4Zn7 by cut and projection from a 6D MgCu2 cube compared with 
experimental ones" space group B2/m, a = 25.96,  b = 14.28, c = 5 . 2 4 / ~  

Exper imenta l  Calcula ted Atomic 
coordinates  coordinates  deviat ion Coordina tes  

Atom Posit ion x y z x y z A d ( l ~ )  in 6D crystal 34 35 

4Mg(1) 4(i) 0.307 0.351 0 0.303 0.353 0 0-11 (010101) + (0~i00 ~ ) 0-6875 -0.6875 
4Mg(2) 4(i) 0.177 0.321 0 0-176 0.322 0 0-03 (0ill01) + (0~0~)  0.3125 -0-8125 
4Mg(3) 4(/) 0.166 0.747 0 0-161 0.745 0 0.13 (021100) + (0~00~) 0-1875 -0.1875 
4Mg(4) 4(i) 0.361 0.570 0 0-359 0-580 0 0.16 (020101) + (0~00~) 0.8125 -0.3125 
4Mg(5) 4(i) 0-129 0-108 0 0.120 0.095 0 0-27 (00TI01) + (0~00-~) 0.1875 -1.1875 
4Mg(6) 4(i) 0.213 0.977 0 0.215 0-973 0 0.09 (021100) + (00-~ ~-0-38) 0.3750 -0-3750 
4Mg(7) 4(i) 0.033 0.726 0 0.035 0.720 0 0.11 (021100) + (~ ~000~) 0.3750 -0.1875 
4Mg(8) 4(0 0.479 0.602 0 0.486 0.605 0 0"18 (i~11oi)+ (i~oo~) 0.6250 -0.3125 
4Mg(9) 4(i) 0-445 0.957 0 0.448 0.960 0 0.08 (0ft.0101) + (00-~ 8~0~) 1.1250 -0-6250 
4Mg(10) 4(i) 0.008 0.903 0 0-010 0.912 0 0-13 ~-[(io~ooo) + (oo2~oi)1 0.5000 -0.2500 
8Zn(1) 8(j) 0-070 0.248 0.25 0.067 0.242 0.25 0.10 (00il00) 0-0000 -1-0000 
8Zn(2) 8(j) 0.232 0.173 0.25 0.229 0.175 0.25 0.09 (00010i) + (0000~) 0.5000 -1-0000 

- _  

8Zn(3) 8(j) 0.108 0.898 0.25 0.108 0.892 0-25 0.09 (021101) 0-0000 0-0000 
8Zn(4) 8(j) 0.086 0.569 0.25 0.088 0-567 0.25 0.06 (0ill00) + (00000-~) 0.0000 -0.5000 
4Zn(5) 4(i) 0.079 0.409 0 0.077 0.405 0 0.07 (01h00) + (0½4)000) 0.0000 -0.7500 
4Zn(6) 4(i) 0-168 0.533 0 0.169 0.533 0 0.03 (01il00) + (00~000) 0.2500 -1.0000 
4Zn(7) 4(i) 0.256 0.657 0 0.260 0.662 0 0.11 (020100) + (0~0000) 0.5000 -0.2500 
4Zn(8) 4(i) 0.313 0.138 0 0.311 0.142 0 0.09 (000101") + (00~-000) 0.7500 -1-0000 
4Zn(9) 4(0 0.402 0.266 0 0.402 0.271 0 0.07 (OhlOi)+ (o)oooo) 1.0000 -0.7500 
4Zn(10) 4(i) 0.346 0.787 0 0.352 0.791 0 0.15 (020100) + (00½000) 0.7500 0-0000 
4Zn(ll)  4(i) 0.330 0.966 0 0.331 0.967 0 0.03 (020100) + (000~)0) 0.7500 -0-5000 
4Zn(12) 4(i) 0-479 0.178 0 0.479 0.175 0 0.04 (10110i) + (~00000) 0.5000 -1.0000 
4Zn(13) 4(f) 0.25 0.5 0-25 0.25 0.5 0.25 0.00 (01010i) + (00000~-) 0.5000 -0.5000 
2Zn(14) 2(c) 0 0.5 0 0 0.5 0 0.00 (01il00) + (½00000) 0.5000 -0.5000 

The average of A d / d  is 3.69%. The origin is at (101101). 

Table  3. Calculated coordinates of X phase (Mn45Co4oSi~5) by cut and projection method from a 6D MgCu2 
cube compared with experimental ones: space group Pnnm, a = 15.43, b = 12.39,  c = 4 . 7 4 / ~  

Exper imental  Calcula ted Atomic 
coordinates  coordinates  deviat ion Coord ina tes  in 

No. Atom Position x y z x y z A d ( A , )  6D crystal c~ 4 t~ 5 

1 CoMn 8(h) 0.1106 0.0858 0.2428 0.1050 0.0955 0.2500 0.15 (010000)+(0000~) 0.0000 0.5000 
2 CoMn 8(h) 0.1759 0.3980 0.2354 0.1851 0-4045 0.2500 0.18 (110000)+(0000~) 0.7500 0.2500 
3 CoMnSi 8(h) 0.3981 0.2104 0.2536 0.3950 0.2135 0.2500 0-06 (120000)+ (0000ff~) 0.7500 0.7500 
4 Si 4(g) 04156 I).9917 0 0'2099 0.1000 0 0.14 ( l i i i01)+(~0000)  0.7500 0.7500 
5 CoMn 4(g) 0.3607 0.0573 0 0.3550 0.0590 0 0.09 (0i0001)+(~00000) 0.3750 0.7500 
6 CoMn 4(g) 0.4986 0-3107 0 0.5000 0.3090 0 0.03 (15i001)+(0~000) 0.5000 0.7500 
7 Si 2(b) ~ ~ 0 ~ ~ 0 0.00 (121001) + (0~0000) 0.2500 0.5000 
8 Si 4(g) 0.3546 0.7424 0 0.3550 0.7500 0 0.09 (liii01)+(000100) 0.1250 0-6250 
9 CoMn 4(g) 0.2092 0.8023 0 0.2099 0.8090 0 0.08 (1ii~01)÷(02000) 0.2500 1.0000 

I I 1 10 Mn 4(g) 0.0701 0-5292 0 0.0725 0.5295 0 0.04 2[(~TOTO1)+(I~O000)] 0.6875 0.4375 
11 Mn 4(g) 0-4728 0.8993 0 0.4761 0.9080 0 0-12 (112101) + (003~)  -0.2188 0-7187 
12 Mn 4(g) 0.0551 0.2779 0 0.0563 0.2830 0 0-07 (010000)+(II00~) 0.2813 0-2188 
13 Mn 4(g) 0.2360 0.2130 0 0.2338 0.2170 0 0-06 (020000)+(~00~) 0.4688 0.5313 
14 Mn 4(g) 0.3394 0-3990 0 0.3426 0.4045 0 0.08 (12i000)+(0~0~) 0.5563 0.4375 
15 Mn 4(g) 0.2351 0.5865 0 0-2338 0-5920 0 0.07 (llli00)+(00-~-0~) 0.4688 0-5313 
16 Mn 4(g) 0-0506 0.9026 0 0-0525 0.9045 0 0.04 (111100)+(~-00~) 0.3125 0-6875 

The average of A d / d  is 3.85%. The origin is at (021000). 
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its 12 closest atoms at 1 to 12 (Fig. 5b) are 0.277 (1 
to 3), 0.288 (4 to 6) and 0.293 nm (7 to 12), respec- 
tively. These are comparable to the interatomic dis- 
tances of 0.291 and 0.279 nm, respectively, for Ta-Ta 
and Ta-Co pairs in the equilibrium TaCo2 phase 
(a = 0.673 nm). Moreover, the atomic volumes of the 
acute and obtuse rhombohedra are 0.0136 and 
0.0126nm 3 respectively, while the average atomic 
volume in TaCo2 is 0.0127 nm 3. It is of interest to 
note that the edge length of the rhombohedron is 
a / x / 2  = 0.476 nm, in good agreement with the 0.46 nm 
obtained by Elser (1986). 

6. Concluding remarks 

In the past Frank & Kasper (1958, 1959) have dis- 
cussed the fundamentals of the geometrical nature of 
the FK phases. Andersson (1978) applied symmetry 
operations to the MgCu: rhombohedral and Zr4A13 
rectangular units to recover a large number of the 
pentagonal FK phases. Recently in this laboratory 
we have used the juxtaposition of pentagonal anti- 
prisms to explain the domain structures of FK phases 
(Ye, Li & Kuo 1985; Ye, Wang & Kuo 1985a, b; Li 
& Kuo, 1985) as well as the structure of new FK 
phases (Wang, Ye & Kuo, 1985). In this paper a new 
description of the structure of FK phases has been 
described which has the following merits: (1) the 
structures of FK phases are described analytically by 
well defined mathematical equations; (2) all known 
structures of pentagonal FK phases can be recovered 
from a common 6D MgCu2 cube by a projection 
method; (3) the structure relationship between the 
icosahedral phase and the pentagonal FK phases is 
made more clear; and (4) the transition structure 
between the icosahedral phase and the equilibrium 
FK phase can be speculated upon. 

The present research is part of a programme of 
study of alloy structures supported by the Science 
Fund of the Academia Sinica. 

Fig. 4. 2D fivefold quasicrystal structure. 
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Fig. 5. Structure model of the icosahedral quasicrystal consisting 
of obtuse (a) and acute (b) rhombohedra  having a common 
interface. The acute rhombohedron  (a =63.43 °) is a slightly 
distorted rhombohedral  unit  cell of the f.c.c. MgCu2 structure 
(a =60°). 

APPENDIX I 

Projection matrix P 

From (5) and (7) we have 

El i  (~>= PB. 

Assuming 

[ I ( ' ) ]  
I= LI<:)j 

and [i,] 
1 (2)= i5 

i6 

in which il, i 2 , . . . ,  i6 are the basis vectors in the 6D 
Cartesian system, let 

B = R I ;  

then 

o r  

.OI = PRI ,  

P = 12R -1. 

For P to be a projection matrix, it is necessary that 

P p  = 12R- I  ~ R  -1 = ~ (  R-11-2 ) R -1 = f 2R  -~ = P, 
(A1) 
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or Let 

R - ' O = E ,  (AI ' )  

where E is the unit matrix, then 
If  R can be decomposed  into two 6 x 3 matrices 12 

and F, 

R = [12r] ,  

and R -~ to two 3 x 6 matrices 12' and f "  

then and 

O R -  ~ = 1212' + O F '  

and 

B=RR-'B=[12r] r' B=(1212'+FF')B. 

Let 

then 

1212'=P, (A2) 

r r '  = P'; ( A3 ) 

B = ( P + P ' ) B  

where P and P '  are projection matrices along the 
parallel and perpendicular  directions respectively. 
Since 

R - I R = E  

then 

LF'12 F'FJ 0 E (3) 

where E (3) is the unit matrix of  order 3. Then 

12'0 = F'F = E (3) (A4) 

1 2 ' r =  r ' n = o .  (A5) 

Then 

R-a12 = "(2 = F '12J = = E{3); 

thus (A 1') and (A 1) are proved. 
Similarly, it can be proved that 

p ' p ' =  p'. 

Once the 6 x 3 matrix of  order  3 is arbitrarily given, 
then R -1, 12' and P can be obtained. It is most 
convenient  to choose F so that the number  of  basis 
vectors of  a unit cell that are perpendicular  and of  
equal modulus  is a maximum. This is especially so 
when 

£2F = O. 

O'= X ~ ;  

n ' r  = x f i r  = 0, 

where X is a 3 x 3 matrix. From (A4), 

12'12 = X~12 = E (3), 

one obtains 

From (A2) 

x =( f in ) - '  

n ' =  (fin)- 'fi .  

P =  O ( ~ 1 2 ) - ' ~ .  (A6) 

From the £2 given in (4a) ,  

p u = a  cos [ ( i -  1)~] cos [ ( j -  1)~p] 

+/3 sin [ ( i -  1)~] sin [ ( j -  1 ) ~ ] +  y cos 2 0 

i =  1 , 2 , . . . , 5 ,  j =  1 , 2 , . . . , 5 ;  

Po = P j 6  = "Y c0s2 0 

P66 = 3/; 

where 

For 0 = tan-~2 = 63.43 °, 

]' a = cos 2 (j~p) 
j=0 

f l =  ~ sin 2 ( j p )  
j=O 

'y=(5COS 2 0 + 1 )  -1. 

= 72 °, 

p 43 
10 

x/~ 1 i i 1 1 1  
1 x/~ 1 i i 1 

l 
i 1 v/5 1 i 1 

1 1 x/~ 1 1 
1 1 T 1 x/5 1 
1 1 1 1 1 x/5 

j =  1 , 2 , . . . , 6 ;  

For 0 = 60 °, ~ = 72 °, 

p=± 
10 

45 1 i ~ 1 
1 v/5 1 1 i 
T 1 x/5 1 i 

i 1 x/5 1 
1 T i 1 x/5 

2/x/5 2/x/5 2/x/5 2/x/5 2 / v ~  

For 0 = 60 °, 0 = c o s - ~  = 70"53 °, 

c~ = 2.4857, fl = 2.5142, y = 2 . 2 5 .  

2/,8] 
2/43I 
2/v~/  
2/43/" 
2/vr~[ 

From the three different P matrices, it is clear that  it 
is easier to use (5) than (7) to obtain rp. 
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APPENDIX 2 

Atoms in the 6D'MgCu2 rhombohedron 

Let us assume that  the acute rhombohedron  ( a  = 
63.43 °) of  the 3D Penrose tiling has a similar structure 
to the 3 D MgCu2 rhombohed ron  ( a  = 60 °) which has 

333 two atoms at ± ( ~ )  in addi t ion to those at the vertices 
and the centres of  edges. This acute rhombohedron  
can have 20 different orientations.  But one ha l f  of  
them are in the opposi te  direction to the other  half,  
so that  only ten independent  orientations exist. Let 
the basis vectors be qi, qj and qk, where the set i, j~ 
k may have the values 

(126), (236), (346), (456), (156), 

(124), (234), ( i34) ,  (7_54), (135). 

The coordinates  of  these 20 atoms inside the rhom- 
bohedron  are 

33 3 33 3 33 3 + ( o ~ ) ,  +(~o~), ±(~oo~), 

333 3 33 33 +(00~),  ±(~00~), ±(~00),  

33 3 ~ 33 3 33 ± ( ~ 0 ) ,  ±(~00),  ± ( ~ 0 ) ,  

3 7 3  ± ( ~ o ) .  

Together  with the a tom at the origin and six more 
atoms on the centres of  the edges with coordinates  
(2!00000)~, there are al together  27 atoms. Since the 
qi are the project ion of  bi, these 27 atoms can be 
considered as projected f rom a 6D unit cell. By pro- 
jecting such a 6D unit cell onto a 3D hyperplane ,  the 
atomic posit ions in the icosahedral  quasicrystal  can 
be obtained.  
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Abstract 

The Debye -Wal l e r  exponent  B and the Debye  tem- 
perature  O for n iobium have been determined at 
room tempera ture  by the elastic neutron diffraction 
method using a triple-axis neutron spectrometer.  The 
contr ibut ion of  TDS to the diffraction peaks  was 
found to be negligible. The value of  B thus found 
was 0.55 ( 5 ) A  2. The Debye  tempera ture  O was 

0108-7673/87/060795-03 $01.50 

262 (12)K.  The results are compared  with values 
obtained by other  techniques.  

Introduction 

From a diffraction exper iment  one could, in principle,  
obtain informat ion  about  lat t ice-dynamical  proper-  
ties such as the mean  square  displacement  of  an a tom 
and the Debye  tempera ture  of  the material .  
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